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We study the spectral properties of the one-dimensional Kondo lattice model as a function of the exchange
coupling, the band filling, and the quasimomentum in the ferromagnetic and paramagnetic phases. Using the
density-matrix renormalization group method, we compute the dispersion relation of the quasiparticles, their
lifetimes, and the Z factor. Sigrist et al. �Phys. Rev. Lett. 67, 2211 �1991�� provided the exact ground state and
the quasiparticle-dispersion relation of the Kondo lattice model with one conduction electron. The quasiparticle
could be identified as the spin polaron. Our calculations of the dispersion relation for partial band fillings give
a result similar to the one-electron case, which suggests that the quasiparticle in both cases is the spin polaron.
We find that the quasiparticle lifetime differs by orders of magnitude between the ferromagnetic and paramag-
netic phases and depends strongly on the quasimomentum.
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I. INTRODUCTION

The Kondo lattice model �KLM� has been a matter of
constant interest for more than last three decades. In two and
three dimensions it is one of the common models to describe
heavy-fermion1 physics and is also a possible candidate for
high-Tc superconductivity.2 Our motivation to study the one-
dimensional �1D� KLM �Ref. 2� is threefold. First it has been
shown3 that the spin polaron, which is a quasiparticle of the
KLM, plays an important role in nonequilibrium transport in
a quantum wire coupled to a ferromagnetic spin chain; our
method provides the possibility to investigate the quasiparti-
cles of the model. The spin polaron might also play an im-
portant role in the electron-spin decay process4 in quantum
dots induced by the hyperfine interaction due to nuclear
spins. Second it might be helpful to understand the one-
dimensional model in greater detail to assist investigations in
higher dimensions. And lastly the model has become inter-
esting for the description of mesoscopic systems, such as
carbon nanotubes filled with fullerenes or endohedral
fullerenes, the so-called peapods.5 The aim of this work is to
expand on the understanding of the spectral properties of the
1D KLM. We show, by means of the density-matrix renor-
malization group �DMRG�,6,7 that persistent quasiparticle
states exist, which are likely to be the spin-polaron states,
and extrapolate their lifetimes and their spectral weights.
Furthermore we calculate the quasiparticle-dispersion rela-
tion. For the case of half-filling we show that our results
qualitatively agree with the results of a strong-coupling ex-
pansion in Ref. 8. We compare dispersion relations and con-
firm the existence of a critical coupling constant at which the

effective quasiparticle mass diverges for large momenta.
The KLM �Fig. 1� consists of a lattice with one localized

f electron on each of the L lattice sites, which do not interact
with each other and a band of itinerant conduction electrons
of finite filling n coupled to the localized electrons by an
on-site Heisenberg exchange interaction. The Hamilton op-
erator of the 1D KLM is given by

H = − t�
i=1

L

�
�=↑,↓

�ci�
† ci+1� + H.c.� + J�

i=1

L

Si · si, �1�

where t is the hopping parameter, ci�
† generates an electron at

site i with spin � and Si�si� are the spin operators of the
localized �conduction� electrons at site i, respectively. J is
the Kondo coupling constant; we will consider only J�0
here, i.e., the antiferromagnetic coupling case. With k we
denote the quasimomentum in the following.

FIG. 1. �Color online� The Kondo lattice model. The conduction
electrons are depicted in the upper row �green� and the localized
electrons are depicted as bolt arrows in the lower row �red�.
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In principle, the 1D KLM supports three phases, depend-
ing on the filling n and on the coupling J: a ferromagnetic, a
paramagnetic, and �at half-filling �n=1� only� a spin liquid
phase �see Fig. 9�. At half-filling of the conduction-electron
band the model is best understood and early works using
large-N methods9,10 and the Gutzwiller approximation11,12 re-
vealed that the magnetic properties are due to the competi-
tion of the Ruderman-Kittel-Kasuya-Yosida �RKKY� interac-
tion and the formation of Kondo singlets, where such a
singlet is a conduction electron forming a spin singlet with a
localized electron. Due to half-filling, the electrons induce an
effective RKKY interaction between the localized spins,
which forces antiferromagnetic power-law correlations in the
ground state. The occurrence of RKKY oscillations or 2kF
oscillations could be confirmed in Ref. 13 using DMRG. By
means of exact diagonalization14 and quantum Monte
Carlo,15 it was shown that the ground state is spin and charge
gapped and that it is a singlet of total spin. Therefore the
ground state can be associated for all J with the universality
class of spin liquids. There has been a controversial discus-
sion about the size of the Fermi volume �which is a single
line in one dimension�, whether it is small, and therefore the
Fermi wave vector is kF= �

2 n, or whether it is large, and
therefore kF= �

2 �n+1�. While a small Fermi volume would
correspond to only conduction electrons contributing to the
Fermi volume, a large Fermi volume would mean that the
localized electrons also contribute to the Fermi volume. The
idea of a large Fermi volume is borrowed from the periodic
Anderson model.2 There the f electrons can move back to the
conduction band and therefore contribute to the Fermi vol-
ume. The KLM can be derived from the periodic Anderson
model16 in the case of large Coulomb interaction, where only
one localized electron per site is allowed and other occupa-
tions are fully suppressed. This gives rise to the question
whether the Fermi volume is also large in the KLM. Lately
the authors of Ref. 8 could argue within a strong-coupling
expansion and from the evaluation of the conduction-
electron density that the Fermi volume in the case of half-
filling is small. In the same work, Ref. 8, the quasiparticle
dynamics of the half-filled KLM has been examined as well.
It has been possible to calculate the quasiparticle-dispersion
relation to good accuracy, where the quasiparticle mass has
been found to diverge around k�� for t /J� t /Jc
�0.50�0.02. Therefore the quasiparticles behave like
nearly localized f electrons due to the strong correlation of
the conduction and localized electrons. This is consistent
with an early large-N approach,2,10 where it could be shown
that the effective electron mass is by magnitudes larger than
the bare electron mass. Although the large-N approach is
valid for arbitrary filling, its application is best at half-filling
due to an intrinsic small energy scale, which can be brought
into relation with a spin gap.2

In the limiting case of vanishing conduction-electron den-
sity it could be rigorously shown17 by both applying the
Perron-Frobenius theorem and later exact diagonalization18

that the KLM is ferromagnetic for all J. Importantly, Sigrist
et al.17 could show that the quasiparticle of the Kondo lattice
model is the spin polaron, which corresponds to an excited
state separated from a continuum of scattering states. Repre-
sentatives of the constituent elements of the spin polaron are

shown in Fig. 2. In Fig. 2�a� the localized spin lattice is
completely ferromagnetic and the electron spin is oriented in
the opposite direction. Due to the antiferromagnetic ex-
change interaction the electron energy for quasimomentum k
is reduced. Via spin-flip processes, this state is coupled to the
states shown in Fig. 2�b�, where the electron spin and one of
the localized spins are flipped and the momentum q has been
transferred to the spin lattice. These are states of higher en-
ergy since the antiferromagnetic interaction can only reduce
the energy if the two flipped spins are at the same site. The
coupling leads to a level repulsion between the states of Figs.
2�a� and 2�b�, with the energetically lower one corresponding
to the spin-polaron state and the higher ones forming the
scattering states band. As proposed in Ref. 3, the spin-
polaron state is expected to have a very long lifetime if its
energy lies outside the band of scattering states, so that it is
protected against magnon absorption and emission processes.

At partial band fillings n, ferromagnetism also survives in
the strong-coupling limit,19 where the KLM can be mapped
to an effective Heisenberg model with a ferromagnetic ex-
change coupling. In this limit the formation of Kondo sin-
glets, which move through the lattice, is sufficient to explain
the occurrence of ferromagnetism, but this does not exclude
RKKY interaction, which might still play an important role.
From exact diagonalization studies,20 it follows that the
KLM is ferromagnetic for J�0.5 at n�0.25. The critical J
increases roughly linear to J�3 at n�0.75. This raises the
question of which mechanism drives ferromagnetism at cou-
plings J of O�1� and one proposal21 is that double exchange
might be the crucial mechanism, where one conduction elec-
tron is responsible for screening several localized electrons.
The screening lowers the total energy in the antiferromag-
netic KLM as long as J surmounts a critical value and forces
the localized spins to align in the same direction.

At a certain J the KLM approaches a second-order
transition22 by lowering J to a paramagnetic phase, where the
spin polaron23 might play an important role. The transition
line has been calculated using exact diagonalization20 and
has been refined later by means of bosonization.21 The de-
struction of the ferromagnetic phase is described by a quan-
tum random transverse-field Ising Hamiltonian.21 Approach-
ing the transition line from high J it has been proposed21,24

that the large ferromagnetic cluster splits up in several small
clusters each corresponding to one spin polaron. Just below
the transition line the small clusters’ direction of magnetiza-
tion is not the same anymore for all clusters and leads to zero

FIG. 2. �Color online� Representatives of the constituent ele-
ments of the spin polaron: �a� electron spin down; �b� electron spin
up and one of the lattice spins down.
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net magnetization. By means of DMRG the spin-structure
factor of the localized electrons could be calculated24 and it
has been found that the size of the Fermi volume is small for
very low J and becomes large approaching the transition line
from lower J. From this one can conclude that near the tran-
sition line, the localized electrons are incorporated in the
Fermi volume and therefore spin polarons are formed. Low-
ering J the spin polarons are destroyed. In another proposal25

using DMRG the size of the Fermi surface for small J has
been calculated from the spin-correlation function and found
to be small. The corresponding authors find for J�1 that
strong boundary charge perturbations mash the true bulk be-
havior and therefore a small Fermi surface is not distinguish-
able from a large Fermi surface. The Fermi surface size is
left as an open question. The paramagnetic KLM has also
been argued26 to belong to the class of Tomonaga-Luttinger
liquids.27 This is motivated by the gapless spin and charge
excitation,2 which also makes the model difficult to handle
with numerical methods using finite system sizes in this re-
gime. From an analysis of Friedel oscillations, which are 2kF
or 4kF oscillations, the Luttinger parameters could be deter-
mined for J�1.8 and the Fermi volume has been found to be
large. For very low J, RKKY or 2kF oscillations dominate
the correlation functions of the KLM. This could be
attributed21 to the backscattering of the conduction electrons
at the localized electrons. In a recent work28 the Luttinger
parameter has been calculated for many values of J and n in
the paramagnetic phase. Using a logarithmic correction the
spin-correlation function can be fitted perfectly to DMRG
data.

In this paper we consider the spectral properties of the
Kondo lattice model at partial band fillings. We will calculate
the dispersion relation in the ferromagnetic phase for differ-
ent Kondo couplings J and various fillings n and find a well-
defined quasiparticle band. Comparing the one conduction-
electron case of Ref. 17 with the partial band filling case
here, the latter seems to be a direct continuation of the
former, meaning that the quasiparticle-dispersion relation is
found to be similar in both cases. Therefore it is likely that
the spin-polaron picture used in Ref. 17 suits here as well.
We are able to confirm the results of Ref. 8 at half-filling. In
a second step we will show from the width of the spectral
densities that the lifetime of the spin polaron is very long and
therefore the quasiparticle is persistent. We also examine the
spectral densities in the paramagnetic phase and find unex-
pectedly that a quasiparticle excitation visible in the spectral
density exists and can be fitted reasonably good by a Lorent-
zian function. It has been argued21 that this quasiparticle also
might be of the spin-polaron type. Its lifetime is smaller by
several orders of magnitude than in the ferromagnetic phase
but the ratio depends very sensitively on the values of J, n,
and the quasimomentum k. An interesting effect is found that
the lifetime is maximal in the ferromagnetic phase if the
quasimomentum is close to the Fermi points.

The paper is outlined as follows. In Sec. II we will discuss
the method, particularly how we calculate spectral densities,
how we extract the lifetimes, and how we extrapolate them.
In Sec. III we will present our results. We will end up in a
brief summary in Sec. IV.

II. METHODS

In this section we describe the methods used in our cal-
culations. First of all we briefly discuss our DMRG algo-
rithm. Second we describe the correction-vector method,
which we use to calculate the Green’s functions. At last we
show how to calculate the lifetime of quasiparticles using the
spectral functions we obtained from the Green’s functions.

A. DMRG

For the calculation of ground states, we use a DMRG
algorithm with Abelian and non-Abelian symmetries, whose
implementation is based on a matrix-product formulation.
We use open-boundary conditions for all calculations. We
kept up to 1800 DMRG ansatz states in our calculations
setting the discarded weight typically smaller than 10−5.

B. Correction-vector method

Applying the correction-vector29–32 method we obtain the
spectral functions A���, where � is the energy. To calculate
A���, we need the retarded Green’s function GA��+ i��
=GA

+��+ i��+GA
−��+ i��, where

GA
+�� + i�� = �0�A† 1

� + E0 + i� − H
A�0	 , �2�

GA
−�� + i�� = �0�A

1

� − E0 + i� + H
A†�0	 �3�

are the two branches of the retarded Green’s function and A
is an arbitrary operator, �0	 is the ground state with energy
E0, and ��0 is an artificial broadening factor, which is
needed to lower the lifetime of the excitation to avoid bound-
ary effects due to the finite system size. The basic rule is to
choose ��

c
L , where c is the velocity of the excitation, but

the minimal � is strongly depending on the model.
In principle one would need to compute both branches of

the Green’s function to obtain the complete spectral proper-
ties. For the determination of lifetimes the spectral weight of
the quasiparticle is nearly completely concentrated in one of
the branches. Therefore we can neglect the other branch in
this case. From now on, we will base all our arguments con-
cerning the Green’s function on the + branch. Concerning the
spectral density the calculations for the − branch can be done
similarly except for a minus sign.

The correction vector is defined as

�c�� + i��	 =
1

� + E0 + i� − H
A�0	 �4�

and hence

�� + E0 + i� − H��c�� + i��	 = A�0	 , �5�

where the ground state �0	 is obtained from the preceding
DMRG calculation. This leads to a non-Hermitian system of
linear equations for real and imaginary parts, which can be
solved using the generalized minimal residual method
�GMRES� method.33 The outcome is �c��+ i��	, which al-
lows us to calculate the Green’s function as
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GA�� + i�� = �0�A�c�� + i��	 . �6�

The spectral density can then be obtained by applying the
standard formula

A�� + i�� = −
1

�
Im GA�� + i�� , �7�

where � is assumed to be real.

C. Quasiparticle lifetime

For the calculation of quasiparticle lifetimes we will limit
ourselves to electronic systems. It is useful to transform the
Hamiltonian into the Fourier space according to

ci� =
1


N
�

k

ck�eikri. �8�

Hence we obtain

H = �
k

�
�=↑,↓

�	0�k�ck�
† ck�� + J�

k

Sk · s−k �9�

with 	0�k�=−2t cos ka, where a is the lattice spacing. The
one-electron Green’s function is then defined as

Gk��� + i�� = �0�ck�

1

� + E0 + i� − H
ck�

† �0	 . �10�

The self-energy 
��k ,�� is implicitly defined for the in-
teracting system H as

Gk��� + i�� =
1

� + i� − �	0�k� − � + 
��k,� + i���
,

with � as the chemical potential. Note that � appears also in
the self-energy. This is necessary, because lim�→0 will not be
carried out in the numerical calculations. In general, the self-
energy is a complex function 
��k ,��=R��k ,��+ iI��k ,��.
The separation of real and imaginary parts leads to

Gk��� + i��

=
1

� − �	0�k� − � + R��k,� + i��� + i�� − I��k,� + i���
.

�11�

We now assume that the self-energy is continuous and only
weakly depends on � in the vicinity of a resonance �i�
=	0�k�−�+R��k ,�� ��=�i�

, where �i� is one out of several
resonances, which are well separated to provide the correct
determination of the lifetime of the quasiparticles �see the
end of this section for the explicit extrapolation scheme�. In
addition we assume �I��k ,���� �	0�k�−�+R��k ,��� near the
resonance we are interested in, i.e., we assume long life-
times, because we are interested in these. This leads to

I��k,� + i�� � I�
�i��k� �12�

in the vicinity of the ith resonance. For the real part of the
self-energy we apply a Taylor expansion at the resonance
�i�. We find

� − �	0�k� − � + R��k,� + i���

� �� − �i���1 − � dR��k,� + i��
d� �

�+i�=�i�


− i�� dR��k,� + i��

d� �
�+i�=�i�

and define

i� = �1 − � dR��k,��
d� �

�=�i�

�−1

. �13�

Substituting this to Eq. �11� the Green’s function in the vi-
cinity of resonance �i� is given by

Gk��� + i�� = i�
1

� − �i� + i�� + i��I�
�i��k���

�14�

and the spectral function obtains the form

Ak��� + i�� = �
i

i�

�

� + i��I�
�i��k��

�� − �i��2 + �� + i��I�
�i��k���2 ,

�15�

which corresponds to a sum of Lorentz distributions at the
resonances �i� with a broadening of

B�i���� = � + i��I�
�i��k�� . �16�

Hence the broadening computed with the correction-vector
method is essentially the sum of the natural broadening
i��I�

�i��k�� and the artificially introduced broadening � and
therefore B��� linearly depends on �. Note that from the
Lehmann representation of the spectral density one can find
that I�

�i��k��0.
The broadened spectral density Ak���+ i�� is a convolu-

tion of the nonbroadened spectral density Ak���� with a
Lorentzian of width �. We now assume that the spectral
density consists of a sum of Lorentz distributions, which are
separated by non-Lorentzian regions. The outcome of the
convolution of two Lorentzians again is a Lorentzian, where
the broadenings behave additively. As the broadening corre-
sponds to an inverse lifetime, we can define the lifetime of
the quasiparticle corresponding to the ith resonance as

� = lim
�→0

1

� + i��I�
�i��k��

=
1

i��I�
�i��k��

. �17�

The limitations of this method are obvious. First of all the
excitation must cause a Lorentzian-shaped peak in the spec-
tral density. To be able to extract the broadening of such a
peak all other peaks must be energetically separated from
this one. Thus we have to check whether the conditions of
our theory are fulfilled or not. We can check whether the
spectral density has a Lorentzian shape �see Fig. 8� and B���
has to depend linearly on � �see Fig. 3�. In Eq. �12� we only
take zeroth order in �+ i� of the imaginary part of the self-
energy into account. The first order leads to a small addi-
tional linear �-dependent contribution in B��� in Eq. �16�,
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which is the reason for the small finite slope of B���−� in
Fig. 3.

We have now two possible estimates for the lifetime of a
quasiparticle:

�1� Lower estimate: use the inverse broadening B���−1

directly �without �→0�. With Eq. �17� B���−1 is smaller
than B�0�−1; this is therefore a reliable lower estimate.

�2� Extrapolation: calculate the broadening for several dif-
ferent �. From this one can extract the linear dependence of
B��� on � and B�0�−1 gives the extrapolated lifetime. See
also Fig. 3.

It turns out that due to long lifetimes only extrapolated
lifetimes are meaningful. Therefore in the next section we
will discuss the results obtained by the second method only.
From the Lorentzian fit of a single resonance peak of the
spectral function in Eq. �15� one can also estimate the spec-
tral weight i� of the corresponding excitation.

III. RESULTS

In this section we will present the results obtained using
the methods we discussed in the last section. First we will
show the calculated dispersion relations considering a Kondo
lattice model at half-filling and at partial filling. Our half-
filling results show a qualitative agreement with the results in
Ref. 8. In the second part we show several spectral functions
and the calculated lifetimes, which leads to the conclusion
that we find a bound-polaron state. The hopping parameter t
is set to t=1 in all calculations.

A. Dispersion

The half-filled KLM serves as the touchstone of our
method, where we can compare our results to those of Trebst
et al.,8 who did a strong-coupling expansion up to 11th order
in t /J. We calculated the dispersion relation for different val-
ues of t /J �see Fig. 4� and used lattice sizes of 32 and 48
sites. The calculations have converged in the sense that we
could not find any deviations between calculations of differ-

ent system sizes. The dispersion relations are a compound of
the single spectral densities or, in other words, the dispersion
relation can be obtained by gluing all the spectral densities
for all values of k together. Our results show very well agree-
ment to the results in Ref. 8 for t /J=0.4 with small devia-
tions for small k. By strong-coupling expansion it is found
that the band flattens out for k→� around t /Jc
�0.50�0.02 and therefore the effective quasiparticle mass
diverges. This is also found by DMRG for a higher value of
t /Jc�0.576�0.002. As one can see, in Fig. 4, the strong-
coupling expansion-dispersion relation has a pronounced
minimum at k�0.7� for t /J=0.6. This minimum is not vis-
ible by eyes only in the DMRG data; still it is there at k
�0.9�. The minimum becomes easily visible also in the
DMRG data for t /J=0.8 as shown in Fig. 4. Summarizing,
the DMRG results match very well to the strong-coupling
expansion for low t /J but the agreement becomes worse for
t /J�0.6. Qualitatively, the same things happen, but for a
larger value of t /J in the DMRG calculations. DMRG is the
more reliable method in that regime because it is nonpertur-
bative and the error can be easily controlled by very small
DMRG truncation errors. In this case it is easy to keep the
truncation error reasonably low. We can confirm the physical
picture established by Trebst et al., namely, that the quasi-
particles gain an enormously high mass, which is due to a
growing correlation between the conduction and the f elec-
trons. The quasiparticles with high momenta therefore be-
have like almost localized f electrons.

Now we consider the dispersion relation of the KLM for
partial band filling �see Fig. 5�. For the ground-state calcula-
tion of the KLM with 48 sites, a filling of n=0.125 and J
=1 we used about 100 DMRG ansatz states. The calculation
of the correction vectors needed 800 DMRG states to reach
good convergence. In Fig. 5 and all other figures of disper-
sion relations, we neglected the chemical potential, which
would shift the lower band edge to nearly zero. One can
distinguish two different bands. The higher one behaves as
−2t cos k �up to a constant offset� and can therefore be at-
tributed to free electrons, which do not form bound states

1x10-6

4x10-6

7x10-6

1x10-5

0 0.02 0.04 0.06 0.08 0.1

B
(η

)
-

η

η

DMRG k=1π/49
DMRG k=3π/49
DMRG k=6π/49

FIG. 3. �Color online� The linear fit of B��� vs � is shown for
three different quasimomenta, for a system with 48 sites, n=0.125,
t=1, and Kondo coupling J=1. The data have been offset by �.
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0 π/2 π

ω
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k

11th order, t/J=0.4
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FIG. 4. �Color online� Dispersion relations of the half-filled
KLM. The comparison to 11th-order perturbation theory is taken
from Ref. 8. The line for t /J=0.8 is meant only as a guide to the
eyes.
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with the localized spins. From now on, this band will be
referred to as the scattering state band in the sense that these
excited states rapidly decay. The lower one of the two bands
represents the states of the system which are formed by the
conduction electrons bound to the localized spins, which
from now on referred to as quasiparticle or spin-polaron
band. Contrary to the scattering state band, this band consists
only of one state, which is separated from the continuum �for
large L, where L is the lattice size� of scattering states and
has a Lorentzian shape from which the lifetime can be ex-
tracted, which is very long in most of the cases �see Sec.
III B�. Even on lowering � the excitation peak does not dif-
fer from its Lorentzian shape; therefore, we can be sure that
only one excitational state can be responsible for this. In
contrast to the spin-polaron band the scattering states band
does not change its width linearly with �. Keeping the same
filling n=0.125, but raising the Kondo coupling constant J to
3.5 �see Fig. 6�, the quasiparticle band becomes more sepa-
rated from the scattering states because the quasiparticle state
is now energetically lowered. This can be understood by a
simple physical picture. For that we rewrite the exchange

coupling of the Hamiltonian as �i
L�JzSi

zsi
z+

J�

2 �Si
+si

−+Si
−si

+��
and we now set J�=0. The quasiparticle state of the KLM
almost only consists of an electron with spin antiparallel to
the localized spins. With respect to our modified exchange
coupling, this results in a lowered energy of Jz /4 per elec-
tron. The scattering states also contain important contribu-
tions with an electron spin oriented parallel to the localized
spins. This leads to a higher energy of Jz /4. Therefore the
energy difference between quasiparticle and scattering states
is Jz /2 and scales with Jz. Taking also a finite J� into ac-
count the quasiparticle energy is even lowered more due to
spin-flip processes. The scattering states band has a similar
shape as before, as expected. The weight of the quasiparticle
states band is also increasing with J. This is also expected
because the state becomes energetically more favorable with
increasing J.

In Fig. 7 we show the dispersion relation of the quasipar-
ticle of a system with J=3.5 for three different fillings, n
=0.125, n=0.25, and n=0.75. The ground state is ferromag-
netic in all cases. We conclude that even in the presence of
many electrons the spin-polaron state can be clearly identi-
fied.

B. Lifetime estimations from spectral functions

In a further step we take a look at single spectral densities
for fixed quasimomentum k, which provides the possibility to
calculate quasiparticle lifetimes of the bound quasiparticles
and proves the existence of bound-polaron states. We con-
sider only the calculation of the extrapolated lifetimes, as
described in Sec. II C and whose extrapolation scheme is
shown in Fig. 3. Calculating extrapolated lifetimes this way,
we have to be very careful due to the assumption that the
spectral density complies with a Lorentz distribution. For the
spectral density being a Lorentzian the imaginary part of the
self-energy has to be very small compared to the energy of
the resonance and it should not vary too much in the vicinity
of the resonance. The expansion of the self-energy leads then
to a Lorentzian function. Thus the spectral density is not

FIG. 5. �Color online� Dispersion of a KLM with 48 sites, n
=0.125, J=1, and t=1 compounded of spectral densities for all
values of k. The color scale corresponds to the height of the spectral
density. The broadening is �=0.2. The lower band is the bound
quasiparticles band, while the upper one is the scattering states
band.

FIG. 6. �Color online� Dispersion relation �as in Fig. 5� of a
KLM with n=0.125, J=3.5, and t=1. The lower band is the bound
quasiparticles band, while the upper one is the scattering states
band.
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FIG. 7. �Color online� Dispersion relations of a KLM with J
=3.5, t=1, and three different fillings, n=0.125, n=0.25, and n
=0.75 extracted of the spectral densities.
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Lorentzian shaped in higher orders of the expansion and it
has to be checked �see, for example, Fig. 8� whether it is
good enough. Figure 8 shows a spectral density for a KLM
with 48 sites, n=0.125, J=1, and quasimomentum k= �

49 . The
artificial broadening is set to �=0.02. The number of data
points obtained provides the possibility of a very precise fit
of the Lorentz distribution. Figure 8 sharply supports the
assumption made in Sec. II C that the spectral density has a
Lorentzian shape, which is necessary to calculate quasiparti-
cle lifetimes.

We would like to make a comment concerning the life-
times in the paramagnetic phase, which is supposed to be of
Luttinger liquid type. In a Luttinger liquid we would not
expect to have well-defined quasiparticles. Therefore the ap-
proximation of Lorentzian-shaped excitations in the spectral
density is crude in the paramagnetic regime of the KLM.
Then it is even more surprising that this approximation fits
the DMRG data relatively well. But we also find that those
excitations in the paramagnetic phase decay fast compared to
the ferromagnetic phase �where we do not expect a Luttinger
liquid because of a finite spin gap� and this would be ex-
pected.

The extrapolated lifetimes are summarized in Fig. 9 and
Table I. There we can see that the lifetime strongly depends
on the parameters filling n and Kondo coupling constant J as
well as on the quasimomentum k. The lifetimes in the ferro-
magnetic phase �this concerns the �n ,J� pairs ��0.125,
0.5�,�0.125, 1�,�0.25, 1�,�0.29, 1�,�0.75, 3.5��� decrease by
approaching the paramagnetic phase by either lowering J or
increasing n. For fixed and low quasimomentum k it seems
that the lifetime decreases by increasing n �even if J is in-
creased at the same time, so that the distance to the paramag-
netic phase is still large �compare, e.g., the pairs �0.125,1�
and �0.75,3.5��. This indicates that the lifetime is influenced
by the presence of other quasiparticles, probably by an effec-
tive interaction between the quasiparticles mediated via the
coupling to the localized spins. This is further substantiated
by the dependence of the quasiparticle lifetime on the quasi-
momentum k in the ferromagnetic phase. For k approaching
the Fermi level, the lifetime increases, which is consistent

with the fact that the phase space for quasiparticle interaction
becomes smaller close to the Fermi level. In contrast,
electron-magnon interaction is expected to be more impor-
tant for quasiparticles close to the Fermi level because the
energy of the spin polaron comes closer to the scattering
band. This effect can be seen in the paramagnetic phase for
the pairs �0.375,0.5� and �0.75,2.5�, where the lifetime de-
creases with increasing quasimomentum. Thus, in the para-
magnetic phase, we conclude that electron-magnon interac-
tion limits the lifetime of the spin polaron. Deep inside the
paramagnetic phase at �n=0.375,J=0.5� the lifetime is short
for all determined values of k. Therefore, as predicted earlier
in Refs. 21 and 22 there exist no persistent quasiparticles in
this regime.

We also extracted the spectral weight of the spin-polaron
excitation from the Lorentzian fit and summarized them in
Table I in the second row of the respective k value. Consid-
ering the three numbered points of Fig. 9 we calculated
the spectral weights: �1� 0.818 004�0.000 001 �2�
0.871 19�0.000 03, and �3� 0.588�0.001, which do fulfill
the expectation that the spectral weight should be signifi-
cantly lower in the paramagnetic phase. The calculated
weights are independent of � within the error bounds. They
show a strong dependence on the quasimomentum �decreas-
ing for growing k� in the ferromagnetic as well as in the
paramagnetic phase. This is expected because the spin-
polaron states with higher value of k have higher energy and
come closer to the scattering states. However, it is unex-
pected that the spectral weight is large for �0.375, 0.5� and
this still has to be explained.

IV. SUMMARY

We have studied the one-dimensional Kondo lattice model
at half-filling and at partial band fillings for various Kondo
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FIG. 8. �Color online� Spectral function of a KLM with 48 Sites,
n=0.125, J=1, t=1, k= �

49, and �=0.02. The green line is obtained
by fitting a Lorentzian to the DMRG data.

FIG. 9. �Color online� Simplified phase diagram of the 1D
Kondo lattice model taken from Ref. 24. The points mark the pa-
rameters at which extrapolated lifetimes have been calculated. The
lifetimes for points 1 �J=1�, 2 �J=0.5�, and 3 �J=0.25� and quasi-
momentum k= �

49 are given directly in the picture by �1, �2, and �3;
the lifetimes for the other points are listed in Table I.
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couplings J. At half-filling we could verify the results of Ref.
8. This includes the dispersion relation and the divergence in
the effective quasiparticle mass. At partial band fillings we
were able to show that in the case of ferromagnetism long
living quasiparticle states exist and we have suggested that
these are spin-polaron quasiparticles as used in Ref. 17. The
lifetime exceeds the lifetime of quasiparticle excitations deep
inside the paramagnetic phase by several orders of magni-
tude. From the dependence on the quasimomentum we con-
clude that the dominant decay processes are the spin-
polaron–spin-polaron interaction in the ferromagnetic phase
and the interaction between electrons and spin waves in the
paramagnetic phase. The weight of the spin-polaron state is
very close to one even for special points in the paramagnetic
phase. The results motivate the speculation that spin coher-
ence can be significantly enhanced by coupling of electrons
to magnons in the ferromagnetic phase of the localized spins.

As we have seen in this paper, the spin excitations in the
ferromagnetic phase can in turn form spin-polaron bound
states with the itinerant electrons, increasing their lifetime
considerably. This effect persists in the presence of many
electrons and becomes more efficient for quasimomenta
close to the Fermi level. It is an interesting question for
future research to investigate the consequences for the spin
relaxation and dephasing rates in the Kondo lattice model by
studying the spin-spin correlation functions.
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